Total No. of Questions : 8]	[Total No. of Printed Pages : 4
	Roll No
CS/CT/CO/CI/IT-302-CBGS	
B.Tech., III Semester	
Examination, June 2020	
Choice Based Grading System (CBGS)	
Discrete Structures	
Time: T	Three Hours
Maximum Marks: 70	
<i>Note:</i> i) Attempt any five que	estions.
ii) All questions carry equal marks.	
iii)All parts of each question to be attempted at one place.	
iv) In case of any doubt or dispute the English version question should be treated as final.	
Miloded	
1. a) If U is a universal set and its two subsets A and B, then	
prove that $(A \cup B)' = \overline{}$	
¶{XEH\$iversal set	
gm{~V h\$la¶=A nb	
b) If $A = \{1, 4\}$, $B = \{4,5\}$, $C = \{5, 7\}$, determine 7	
Α { },	}, C }

CS/CT/CO/CI/IT-302-CBGS

PTO

$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

b) Define Semi group. Prove that every sub group of a cyclic group G is cyclic. 7

3. a) Show that the rule of hypothetical syllogism is valid. 7

$$q \rightarrow r$$
 $p \rightarrow r$

b) Prove that the proposition is a tautology.

$$(p \lor \sim q) \land (\sim p \lor \sim q) \lor q$$

4. a) Test the validity of argument :

it rains, Ram will be sick

It did not rain

Ram was not sick

b) Prove that G and H are Isomorphic

CS/CT/CO/CI/IT-302-CBGS

Contd...

7

7

7

7

- b) Define the followings with examples:
 - i) Multi graph
- ii) Isomorphic graph
- iii) Eulerian graph
- i) «

- ii) Isomorphic J«m′\$
- iii) Eulerian **J**⋒′\$
- 6. a) Let $A = \{a, b, c, d\}$ and P(A) its power set. Draw Hasse diagram of $P(A) \subseteq A$
 - b) Determine the discrete numeric function corresponding
 - to the generating function $A(z) = \frac{(1+z)^2}{(1+z)^4}$.

$$A(z) = \frac{(1+z)^2}{(1+z)^4}$$

CS/CT/CO/CI/IT-302-CBGS

PTO

7. a) What is Graph coloring? Define chromatic number give any one example to explain your answer. 7

.

b) Solve the recurrence relation:

$$a_r - 7a_{r-1} + 10a_{r-2} = 0$$
 given $a_0 = 0$ and $a_1 = 6$. 7 recurrence relation **H\$mo hb H\$[aE**- $a_r - 7a_{r-1} + 10a_{r-2} = 0$ given $a_0 = 0$ and $a_1 = 6$.

8. a) Find the shortest path between *a* and *z* in the graph shown below.

b) Write short notes.

7

- i) Posets
- ii) Lattices
- iii) Permutation and combination

CS/CT/CO/CI/IT-302-CBGS